Last chance! 50% off unlimited learning
Sale ends in
gls
Simulate values from an object of class gls. Unequal variances,
as modeled using the ‘weights’ option are supported, and there is experimental
code for dealing with the ‘correlation’ structure. This generates just one simulation
from these type of models. To generate multiple simulations use simulate_lme
simulate_gls(
object,
psim = 1,
na.action = na.fail,
naPattern = NULL,
data = NULL,
...
)
It returns a vector with simulated values with length equal to the number of rows in the original data
object of class gls
parameter simulation level, 0: for fitted values, 1: for simulation from fixed parameters (assuming a fixed vcov matrix), 2: for simulation considering the uncertainty in the residual standard error (sigma), this returns data which will appear similar to the observed values
default ‘na.fail’. See predict.gls
missing value pattern. See predict.gls
the data argument is needed when using this function inside user defined functions. It should be identical to the data used to fit the model.
additional arguments (it is possible to supply a newdata this way)
This function is based on predict.gls
function
It uses function mvrnorm
to generate new values for the coefficients
of the model using the Variance-Covariance matrix vcov
. This variance-covariance matrix
refers to the one for the parameters ‘beta’, not the one for the residuals.
predict.gls
simulate_lme
# \donttest{
require(nlme)
data(Orange)
fit.gls <- gls(circumference ~ age, data = Orange,
weights = varPower())
## Visualize covariance matrix
fit.gls.vc <- var_cov(fit.gls)
image(log(fit.gls.vc[,ncol(fit.gls.vc):1]))
sim <- simulate_gls(fit.gls)
# }
Run the code above in your browser using DataLab