Learn R Programming

⚠️There's a newer version (2.0.0) of this package.Take me there.

nlstimedist

nlstimedist fits a biologically meaningful distribution function to time-sequence data (phenology), estimates parameters to draw the cumulative distribution function and probability density function and calculates standard statistical moments and percentiles.

Installation

You can install:

  • the latest released version from CRAN with
install.packages("nlstimedist")
  • the latest development version from GitHub with
devtools::install_github("nathaneastwood/nlstimedist")

Usage

Preparing the data

Data should be in tidy format. nlstimedist provides three example tidy datasets: lobelia, pupae and tilia.

head(tilia)
#>   Day Trees
#> 1  94     0
#> 2  95     0
#> 3  96     1
#> 4 103     1
#> 5 104     0
#> 6 105     3

We first need to calculate the cumulative number of trees as well as the proportions. We do this using the tdData function.

tdTilia <- tdData(tilia, x = "Day", y = "Trees")
tdTilia
#> # A tibble: 26 × 4
#>      Day Trees  cumN    propMax
#>    <int> <dbl> <dbl>      <dbl>
#> 1     96     1     1 0.01538462
#> 2    103     1     2 0.03076923
#> 3    105     3     5 0.07692308
#> 4    107     1     6 0.09230769
#> 5    110     4    10 0.15384615
#> 6    111     7    17 0.26153846
#> 7    112     3    20 0.30769231
#> 8    114     1    21 0.32307692
#> 9    115     3    24 0.36923077
#> 10   116     6    30 0.46153846
#> # ... with 16 more rows

Fitting the model

We fit the model to the proportion of the cumulative number of trees (propMax) in the tdTilia data using the timedist function.

model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5, t = 120)
model
#> Nonlinear regression model
#>   model: propMax ~ 1 - (1 - (r/(1 + exp(-c * (Day - t)))))^Day
#>    data: data
#>         r         c         t 
#>   0.02721   0.17126 124.84320 
#>  residual sum-of-squares: 0.01806
#> 
#> Number of iterations to convergence: 10 
#> Achieved convergence tolerance: 1.49e-08

Extracting the moments

We can extract the mean, variance, standard deviation, skew, kurtosis and entropy of the model as follows.

model$m$getMoments()
#>       mean variance       sd     skew kurtosis entropy
#> 1 118.0325 180.7509 13.44436 4.324762 46.82073 5.36145

Extracting the RSS

Similarly we can extract the RSS of the model

model$m$rss()
#> [1] 0.9930469

Plotting the PDF and CDF

The pdf and cdf of the model have their own plotting functions.

tdPdfPlot(model)

tdCdfPlot(model)

Citation

Franco, M. (2012). The time-course of biological phenomenon - illustrated with the London Marathon. Unpublished manuscript. Plymouth University.

Copy Link

Version

Install

install.packages('nlstimedist')

Monthly Downloads

42

Version

1.1.4

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Nathan Eastwood

Last Published

May 15th, 2019

Functions in nlstimedist (1.1.4)

tdPercentiles

Calculate percentiles
tdPDF

Calculate the PDF and CDF
tilia

Leafing phenology of tilia cordata
timedist

Fit the Franco model
tdRSS

Calculate the corrected residual sum of squares
lobelia

Lobelia urens seeds data
tdData

Prepare nlstimedist data
tdMoments

Calculate moments for the fitted timedist model
tdCdfPlot

Plot the timedist PDF or CDF
nlstimedist

Fit the time-course of biological phenomena
pupae

Emergence of butterflies data
reexports

Objects exported from other packages
augmentMultiple

Create the data for the plots
glance.timedist

Construct a single row summary "glance" of a timedist model