Learn R Programming

nnTensor (version 1.1.5)

jNMF: Joint Non-negative Matrix Factorization Algorithms (jNMF)

Description

The input data objects are assumed to be non-negative matrices. jNMF decompose the matrices to two low-dimensional factor matices simultaneously.

Usage

jNMF(X, M=NULL, pseudocount=1e-10,
  initW=NULL, initV=NULL, initH=NULL, fixW=FALSE, fixV=FALSE,
  fixH=FALSE,
  L1_W=1e-10, L1_V=1e-10, L1_H=1e-10,
  L2_W=1e-10, L2_V=1e-10, L2_H=1e-10,
  J = 3, w=NULL, algorithm = c("Frobenius", "KL", "IS", "PLTF"),
  p=1, thr = 1e-10, num.iter = 100, viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X

A list containing input matrices (X_k, <N*Mk>, k=1..K).

M

A list containing the mask matrices (X_k, <N*Mk>, k=1..K). If the input matrix has missing values, specify the element as 0 (otherwise 1).

pseudocount

The pseudo count to avoid zero division, when the element is zero (Default: 1e-10).

initW

The initial values of factor matrix W, which has N-rows and J-columns (Default: NULL).

initV

A list containing the initial values of multiple factor matrices (V_k, <N*J>, k=1..K, Default: NULL).

initH

A list containing the initial values of multiple factor matrices (H_k, <Mk*J>, k=1..K, Default: NULL).

fixW

Whether the factor matrix W is updated in each iteration step (Default: FALSE).

fixV

Whether the factor matrices Vk are updated in each iteration step (Default: FALSE).

fixH

Whether the factor matrices Hk are updated in each iteration step (Default: FALSE).

L1_W

Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.

L1_V

Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.

L1_H

Paramter for L1 regularitation (Default: 1e-10). This also works as small positive constant to prevent division by zero, so should be set as 0.

L2_W

Paramter for L2 regularitation (Default: 1e-10).

L2_V

Paramter for L2 regularitation (Default: 1e-10).

L2_H

Paramter for L2 regularitation (Default: 1e-10).

J

Number of low-dimension (J < N, Mk).

w

Weight vector (Default: NULL)

algorithm

Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available (Default: "KL").

p

The parameter of Probabilistic Latent Tensor Factorization (p=0: Frobenius, p=1: KL, p=2: IS)

thr

When error change rate is lower than thr, the iteration is terminated (Default: 1E-10).

num.iter

The number of interation step (Default: 100).

viz

If viz == TRUE, internal reconstructed matrix can be visualized.

figdir

the directory for saving the figure, when viz == TRUE.

verbose

If verbose == TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns (J < N, Mk). V : A list which has multiple elements containing N-rows and J-columns (J < N, Mk). H : A list which has multiple elements containing Mk-rows and J-columns matrix (J < N, Mk). RecError : The reconstruction error between data matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction error calculated by training set (observed values specified by M). TestRecError : The reconstruction error calculated by test set (missing values specified by M). RelChange : The relative change of the error.

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Adenocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocomputing 13:279-290

Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research 40(19), 9379-9391

Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics 32(1), 1-8

Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference on Latent Variable Analysis and Signal Separation 346-353

N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses, Scientific Report

Examples

Run this code
# NOT RUN {
matdata <- toyModel(model = "siNMF_Hard")
out <- jNMF(matdata, J=2, num.iter=2)
# }

Run the code above in your browser using DataLab