Last chance! 50% off unlimited learning
Sale ends in
Evaluates the Hessian (matrix of second derivatives) of the specified
neural network. Normally called via argument Hess=TRUE
to nnet
or via
vcov.multinom
.
nnetHess(net, x, y, weights)
square symmetric matrix of the Hessian evaluated at the weights stored in the net.
object of class nnet
as returned by nnet
.
training data.
classes for training data.
the (case) weights used in the nnet
fit.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
nnet
, predict.nnet
# use half the iris data
ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
targets <- matrix(c(rep(c(1,0,0),50), rep(c(0,1,0),50), rep(c(0,0,1),50)),
150, 3, byrow=TRUE)
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,], size=2, rang=0.1, decay=5e-4, maxit=200)
eigen(nnetHess(ir1, ir[samp,], targets[samp,]), TRUE)$values
Run the code above in your browser using DataLab