```
# use half the iris data
ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
targets <- class.ind( c(rep("s", 50), rep("c", 50), rep("v", 50)) )
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,], size = 2, rang = 0.1,
decay = 5e-4, maxit = 200)
test.cl <- function(true, pred) {
true <- max.col(true)
cres <- max.col(pred)
table(true, cres)
}
test.cl(targets[-samp,], predict(ir1, ir[-samp,]))
# or
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
ir.nn2 <- nnet(species ~ ., data = ird, subset = samp, size = 2, rang = 0.1,
decay = 5e-4, maxit = 200)
table(ird$species[-samp], predict(ir.nn2, ird[-samp,], type = "class"))
```

Run the code above in your browser using DataCamp Workspace