#Non-negative LASSO
data(car)
attach(car)
x=as.matrix(car[,1:10])
g1=nnlasso(x,y,family="normal")
plot(g1)
plot(g1,xvar="lambda")
#Non-negative Elastic net with same data
## Not run:
# g2=nnlasso(x,y,family="normal",tau=0.6)
# plot(g2)
# plot(g2,xvar="lambda")
# ## End(Not run)
#Non-negative Ridge regression with same data
## Not run:
# g3=nnlasso(x,y,family="normal",tau=0)
# plot(g3)
# plot(g3,xvar="lambda")
# ## End(Not run)
#Non-negative L1 penalized GLM for binomial family
## Not run:
# g1=nnlasso(x,y1,family="binomial")
# plot(g1)
# plot(g1,xvar="lambda")
# ## End(Not run)
#Non-negative Elastic net with GLM with binomial family
## Not run:
# g2=nnlasso(x,y1,family="binomial",tau=0.8)
# plot(g2)
# plot(g2,xvar="lambda")
# ## End(Not run)
#coefficient estimates for a particular lambda for normal family
g1=nnlasso(x,y,lambda=0.01,family="normal",path=FALSE,SE=TRUE)
coef(g1)
round(g1$se,3)
#coefficient estimates for a particular lambda for binomial family
## Not run:
# g2=nnlasso(x,y1,lambda=0.01,family="binomial",path=FALSE,SE=TRUE)
# coef(g2)
# round(g2$se,3)
# detach(car)
# ## End(Not run)
Run the code above in your browser using DataLab