Usage
nnlasso.binomial.lambda(n,p,sumy,beta0.old,beta1.old,x,y
,dxkx0,tau,lambda1,tol,maxiter,xbeta.old,mu1,eps,SE)
Arguments
beta0.old
Initial value of intercept
beta1.old
A vector of initial values of slope coefficients
x
A n by p matrix of predictors
y
A vector of n observations
dxkx0
In case of a model with intercept, first diagonal of X'X
tau
Elastic net paramter. Default is 1
lambda1
The value of lambda
tol
Tolerance criterion. Default is 10^-6
maxiter
Maximum number of iterations. Default is 10000
xbeta.old
A n by 1 vector of xbeta values
mu1
The value of mu at beta.old
eps
A small value below which a coefficient would be considered as zero. Default is eps=1e-6
SE
Logical. If SE=TRUE, standard errors of the coefficients will be produced. Default is SE=FALSE