powered by
Calls the functions to run each of the three steps of the pipeline (similarity calculation, noise quantification, noise removal), with the specified parameters. See the individual function documentation for more details and required arguments. Required steps: calculate_expression_similarity_counts, calculate_noise_threshold. remove_noise_from_matrix. Optional steps: optimise_window_length, calculate_noise_threshold_method_statistics
calculate_expression_similarity_counts
calculate_noise_threshold
remove_noise_from_matrix
optimise_window_length
calculate_noise_threshold_method_statistics
noisyr_counts( expression.matrix, n.elements.per.window = NULL, optimise.window.length.logical = FALSE, similarity.threshold = 0.25, method.chosen = "Boxplot-IQR", ... )
the expression matrix used as input for the similarity calculation; this argument is required
number of elements to have in a window passed to calculate_expression_similarity_counts(); default 10% of the number of rows
whether to call optimise_window_length to try and optimise the value of n.elements.per.window
parameters passed on to calculate_noise_threshold; they can be single values or vectors; if they are vectors optimal values are computed by calling calculate_noise_threshold_method_statistics and minimising the coefficient of variation across samples; all possible values for method.chosen can be viewed by get_methods_calculate_noise_threshold
get_methods_calculate_noise_threshold
arguments to be passed on to individual pipeline steps
The denoised expression matrix.
noisyr, noisyr_transcript
noisyr
noisyr_transcript
# NOT RUN { noisyr_counts( expression.matrix = matrix(1:100, ncol = 5), similarity.measure = "correlation_pearson", n.elements.per.window = 3) # }
Run the code above in your browser using DataLab