Learn R Programming

nonParQuantileCausality

Implements the nonparametric causality-in-quantiles test.

Lag order: first-order only (uses $x_{t-1}$ and $y_{t-1}$).

Install (dev)

# install.packages("devtools")
devtools::install_github("https://github.com/mbalcilar/nonParQuantileCausality")

Example

library(nonParQuantileCausality)
set.seed(1)
x <- arima.sim(n = 600, list(ar = 0.4))
y <- 0.5*dplyr::lag(x, 1) + rnorm(600)  # if dplyr present; otherwise build your own lag
y[is.na(y)] <- mean(y, na.rm = TRUE)

obj <- np_quantile_causality(x, y, type = "mean", q = seq(0.1, 0.9, 0.1))
plot(obj)
library(nonParQuantileCausality)
data(gold_oil)

obj <- np_quantile_causality(
  x = gold_oil$Oil, y = gold_oil$Gold,
  type = "mean", q = seq(0.05, 0.95, 0.05)
)
plot(obj)

References

  • Balcilar, M., Gupta, R., & Pierdzioch, C. (2016). Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test. Resources Policy, 49, 74–80.

  • Balcilar, M., Gupta, R., Kyei, C., & Wohar, M. E. (2016). Does economic policy uncertainty predict exchange rate returns and volatility? Evidence from a nonparametric causality-in-quantiles test. Open Economies Review, 27(2), 229–250.

Copy Link

Version

Install

install.packages('nonParQuantileCausality')

Monthly Downloads

131

Version

0.1.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Mehmet Balcilar

Last Published

September 30th, 2025

Functions in nonParQuantileCausality (0.1.0)

nonParQuantileCausality-package

nonParQuantileCausality: Nonparametric Causality in Quantiles
np_quantile_causality

Nonparametric Causality-in-Quantiles Test
gold_oil

Monthly Gold and Oil Returns
plot.np_quantile_causality

Plot method for np_quantile_causality objects
YourPackageName

YourPackageName: Nonparametric Causality-in-Quantiles