xSet
~~GeneSet
in the given experiment,
or a list of such matrices for each set in a GeneSetCollection
.
This method is applicable for all three approximation methods.
xSet(object)
npGSEAResultNorm
, npGSEAResultBeta
,
npGSEAResultChiSq
,npGSEAResultNormCollection
,
npGSEAResultBetaCollection
, or npGSEAResultChiSqCollection
signature(object = "npGSEAResultNorm")
npGSEAResultNorm
objectsignature(object = "npGSEAResultBeta")
npGSEAResultBeta
objectsignature(object = "npGSEAResultChiSq")
npGSEAResultChiSq
objectsignature(object = "npGSEAResultNormCollection")
npGSEAResultNormCollection
objects (1 for each set)signature(object = "npGSEAResultBetaCollection")
npGSEAResultBetaCollection
objects (1 for each set)signature(object = "npGSEAResultChiSqCollection")
npGSEAResultChiSqCollection
objects (1 for each set)npGSEAResultNorm
-class
set.seed(15)
yFactor <- as.factor( c(rep("treated", 5), rep("control", 5)) )
xData <- matrix(data=rnorm(length(letters)*10) ,nrow=length(letters), ncol=10)
rownames(xData) <- letters
geneSetABC15 <- GeneSet(geneIds=letters[1:15], setName="setABC15")
res <- npGSEA(x = xData, y = yFactor, set = geneSetABC15)
head( xSet(res) )
Run the code above in your browser using DataLab