data(endosim)
# Evaluate the effect of age on the accuracy of the body mass index for males
m0.men <- INPROCreg(marker = "bmi", covariate = "age", group = "idf_status",
tag.healthy = 0,
data = subset(endosim, gender == "Men"),
ci.fit = FALSE, test = FALSE,
accuracy = c("EQ","TH"),
accuracy.cal="AROC",
control=controlINPROCreg(p=1,kbin=30,step.p=0.01),
newdata = data.frame(age = seq(18,85,l=50)))
summary(m0.men)
plot(m0.men)
# Evaluate the effect of age on the accuracy of the body mass index for females
m0.women <- INPROCreg(marker = "bmi", covariate = "age", group = "idf_status",
tag.healthy = 0,
data = subset(endosim, gender == "Women"),
ci.fit = FALSE, test = FALSE,
accuracy = c("EQ","TH"),
accuracy.cal="ROC",
control=controlINPROCreg(p=1,kbin=30,step.p=0.01),
newdata = data.frame(age = seq(18,85,l=50)))
summary(m0.women)
plot(m0.women)
if (FALSE) {
# For computing confidence intervals and testing covariate effect
set.seed(123)
m1.men <- INPROCreg(marker = "bmi", covariate = "age", group = "idf_status",
tag.healthy = 0,
data = subset(endosim, gender == "Men"),
ci.fit = TRUE, test = TRUE,
accuracy = c("EQ","TH"),
accuracy.cal="AROC",
control=controlINPROCreg(p=1,kbin=30,step.p=0.01),
newdata = data.frame(age = seq(18,85,l=50)))
summary(m1.men)
plot(m1.men)
}
Run the code above in your browser using DataLab