# NOT RUN {
data(pembro)
set1<-nphparams(time=time, event=event, group=group,data=pembro,
param_type=c("score","S"),
param_par=c(3.5,2),
param_alternative=c("less","greater"),
closed_test=TRUE,alternative_test="one.sided")
print(set1)
plot(set1,trt_name="Pembrolizumab",ctr_name="Cetuximab")
set2<-nphparams(time=time, event=event, group=group, data=pembro,
param_type=c("S","S","S","Q","RMST"),
param_par=c(0.5,1,2,0.5,3.5))
print(set2)
plot(set2,showlines=TRUE,show_rmst_diff=TRUE)
#Create a summary table for set2, showing parameter estimates for each group and the
#estimated differences between groups. Also show unadjusted and multiplicity adjusted
#confidence intervals using the multivariate normal method and, for comparison,
#Bonferroni adjusted confidence intervals:
set2Bonf<-nphparams(time=time, event=event, group=group, data=pembro,
param_type=c("S","S","S","Q","RMST"),
param_par=c(0.5,1,2,0.5,3.5),
lvl=1-0.05/5)
KI_paste<-function(x,r) {
x<-round(x,r)
paste("[",x[,1],", ",x[,2],"]",sep="")
}
r<-3
tab<-data.frame(
Parameter=paste(set2$tab[,1],set2$tab[,2]),
Pembrolizumab=round(set2$est1,r),
Cetuximab=round(set2$est0,r),
Difference=round(set2$tab$Estimate,r),
CI_undadj=KI_paste(set2$tab[,5:6],r),
CI_adj=KI_paste(set2$tab[,8:9],r),
CI_Bonf=KI_paste(set2Bonf$tab[,c(5:6)],r))
tab
# }
Run the code above in your browser using DataLab