# NOT RUN {
# The first three examples (galaxy data, toxoplasmosis data , fabric faults)
# are based on GLIM examples in Aitkin et al. (2005), and the forth example using
# the Hospital-Stay-Data (Rosner, 2000) is taken from Einbeck & Hinde (2006).
# The fifth data example using the Oxford boys is again inspired by Aitkin et al. (2005).
# The sixth example on Irish suicide rates is taken from Sofroniou et al. (2006).
# The galaxy data
data(galaxies, package="MASS")
gal<-as.data.frame(galaxies)
galaxy.np6 <- alldist(galaxies/1000~1, random=~1, random.distribution="np",
data=gal, k=6)
galaxy.np8u <- alldist(galaxies/1000~1, random=~1, random.distribution="np",
data=gal, k=8, lambda=0.99)
round(galaxy.np8u$sdev$sdevk, digits=3)
# [1] 0.912 0.435 0.220 0.675 1.214 0.264 0.413 0.297
# The toxoplasmosis data
data(rainfall)
rainfall$x<-rainfall$Rain/1000
rainfall$x2<- rainfall$x^2; rainfall$x3<- rainfall$x^3
toxo.np3<- alldist(cbind(Cases,Total-Cases) ~ x+x2+x3, random=~1,
random.distribution="np", family=binomial(link=logit), data=rainfall, k=3)
toxo.np3x<- alldist(cbind(Cases,Total-Cases) ~ x, random=~x,
random.distribution="np", family=binomial(link=logit), data=rainfall, k=3)
# is the same as
toxo.np3x<- alldist(Cases/Total ~ x, random = ~x, weights=Total,
family=binomial(link=logit), data=rainfall, k=3)
# or
toxo.np3x<-update(toxo.np3, .~.-x2-x3, random = ~x)
# The fabric faults data
data(fabric)
coefficients(alldist(y ~ x, random=~1, family=poisson(link=log),
random.distribution="gq", data= fabric, k=3, verbose=FALSE))
# (Intercept) x z
# -3.3088663 0.8488060 0.3574909
# The Pennsylvanian hospital stay data
data(hosp)
fitnp3<- alldist(duration~age+temp1, data=hosp, k=3, family=Gamma(link=log),
tol=0.5)
fitnp3$shape$shape
# [1] 50.76636
fitnp3<- alldist(duration~age+temp1, data=hosp, k=3, family=Gamma(link=log),
tol=0.5, lambda=0.9)
fitnp3$shape$shapek
# [1] 49.03101 42.79522 126.64077
# The Oxford boys data
data(Oxboys, package="nlme")
Oxboys$boy <- gl(26,9)
allvc(height~age, random=~1|boy, data=Oxboys, random.distribution='gq', k=20)
allvc(height~age, random=~1|boy, data=Oxboys,random.distribution='np',k=8)
# with random coefficients:
allvc(height~age,random=~age|boy, data=Oxboys, random.distribution='np', k=8)
# Irish suicide data
data(irlsuicide)
# Crude rate model:
crude<- allvc(death~sex* age, random=~1|ID, offset=log(pop),
k=3, data=irlsuicide, family=poisson)
crude$disparity
# [1] 654.021
# Relative risk model:
relrisk<- allvc(death~1, random=~1|ID, offset=log(expected),
k=3, data=irlsuicide, family=poisson)
relrisk$disparity
# [1] 656.4955
# }
Run the code above in your browser using DataLab