Learn R Programming

npmlreg (version 0.46-5)

missouri: Missouri lung cancer data

Description

Lung cancer mortality in the 84 largest Missouri cities, for males aged 45-54, 1972-1981. Data presented in Tsutakawa (1985).

Usage

data(missouri)

Arguments

Format

A data frame with 84 observations on the following 2 variables.

Size

population of the city.

Deaths

number of lung cancer deaths.

Details

The data set was analyzed using a Poisson model with normal random effect in Tsutakawa (1985), and using a binomial logit model with unspecified random effect distribution in Aitkin (1996b). Aitkin fitted this model with GLIM4.

References

Aitkin, M. (1996b). Empirical Bayes shrinkage using posterior random effect means from nonparametric maximum likelihood estimation in general random effect models. Statistical Modelling: Proceedings of the 11th IWSM 1996, 87-94.

Tsutakawa, R. (1985). Estimation of Cancer Mortalilty Rates: A Bayesian Analysis of Small Frequencies. Biometrics 41, 69-79.

Examples

Run this code
# NOT RUN {
data(missouri)
alldist(Deaths~1, offset=log(Size), random=~1, k=2,
   family=poisson(link='log'), data=missouri)
# }

Run the code above in your browser using DataLab