######******###### UNIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
# one sample t-test
set.seed(0)
np.loc.test(x)
# Johnson t-test
set.seed(0)
np.loc.test(x, symmetric = FALSE)
# Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, median.test = TRUE)
# Fisher sign test
set.seed(0)
np.loc.test(x, median.test = TRUE, symmetric = FALSE)
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
y <- rnorm(n)
# paired t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE)
# paired Johnson t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE, symmetric = FALSE)
# paired Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE)
# paired Fisher sign test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE, symmetric = FALSE)
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- rnorm(m, mean = 0.5)
y <- rnorm(n)
# Welch t-test
set.seed(0)
np.loc.test(x, y)
# Student t-test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE)
# Studentized Wilcoxon test
set.seed(0)
np.loc.test(x, y, median.test = TRUE)
# Wilcoxon rank sum test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE, median.test = TRUE)
if (FALSE) {
######******###### MULTIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
# multivariate one sample t-test
set.seed(0)
ptest <- np.loc.test(x)
ptest
ptest$univariate
ptest$adj.p.values
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate paired t-test
set.seed(0)
ptest <- np.loc.test(x, y, paired = TRUE)
ptest
ptest$univariate
ptest$adj.p.values
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- cbind(rnorm(m, mean = 0.5),
rnorm(m, mean = 1),
rnorm(m, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate Welch t-test
set.seed(0)
ptest <- np.loc.test(x, y)
ptest
ptest$univariate
ptest$adj.p.values
}
Run the code above in your browser using DataLab