Last chance! 50% off unlimited learning
Sale ends in
roi (p.ungauged, p.gauged, cod.p, x=NULL, cod=NULL)
roi.hom (p.ungauged, p.gauged, cod.p, x, cod,
test="HW", limit=2, Nsim=500, index=2)
roi.st.year (p.ungauged, p.gauged, cod.p, x, cod,
test="HW", station.year=500, Nsim=500, index=2)
cod
index
=1 samples are divided by their average value;
if index
=2 (default) samples are divided by their median value"HW"
(default) or "AD"
(in roi.st.year
you can choose "HW and AD"
too"HW"
or .95 for "AD"
"HW"
or "AD"
testsroi
returns the p.ungauged
.
It the gauged sites ordered according to the euclidean distance against the site of interest (the distance is evaluated in the space defined by parameters p.ungauged
and p.gauged
).
If x=NULL
and cod=NULL
(default), a data.frame with the ordered sites and the distances against the site of interest is returned.
If x
and cod
are provided, the data.frame will contain also statistics of samples (number of data n
and L-moments). roi.hom
returns the p.ungauged
.
It returns codes of gauged sites that form an homogeneous region according to the Hosking and Wallis "HW"
or Anderson-Darling "AD"
tests.
The region is formed using distances in the space defined by parameters p.ungauged
and p.gauged
.
roi.st.year
returns the p.ungauged
.
It returns codes of gauged sites that form a region and the risult of homogeneity tests, according to the station-year criterion.
The region is formed using distances in the space defined by parameters p.ungauged
and p.gauged
.
Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Pre ss, Cambridge, UK.
Viglione A. (2007) Metodi statistici non-supervised per la stima di grandezze idrologiche in siti non strumentati, PhD thesis, In press.
traceWminim
, AD.dist
, HOMTESTS
for the definition of the Hosking and Wallis "HW"
or Anderson-Darling "AD"
tests.data(hydroSIMN)
parameters
summary(parameters)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
roi(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1])
roi(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod)
# roi.hom
#roi.hom(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod)
# it takes some time
#roi.hom(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],x,cod,
# test="AD",limit=.95) # it takes some time
#roi.hom(parameters[8,3:5],parameters[-8,3:5],
# parameters[-8,1],x,cod) # it takes some time
# roi.st.year
roi.st.year(parameters[5,3:5],parameters[-5,3:5],
parameters[-5,1],x,cod)
roi.st.year(parameters[5,3:5],parameters[-5,3:5],parameters[-5,1],
x,cod,test="AD",station.year=100)
Run the code above in your browser using DataLab