LOGNORM
provides the link between L-moments of a sample and the three parameter
log-normal distribution.f.lognorm (x, xi, alfa, k)
F.lognorm (x, xi, alfa, k)
invF.lognorm (F, xi, alfa, k)
Lmom.lognorm (xi, alfa, k)
par.lognorm (lambda1, lambda2, tau3)
rand.lognorm (numerosita, xi, alfa, k)
f.lognorm
gives the density $f$, F.lognorm
gives the distribution function $F$, invFlognorm
gives the quantile function $x$, Lmom.lognorm
gives the L-moments ($\lambda_1$, $\lambda_2$, $\tau_3$, $\tau_4$), par.lognorm
gives the parameters (xi
, alfa
, k
), and rand.lognorm
generates random deviates.Definition
Parameters (3): $\xi$ (location), $\alpha$ (scale), $k$ (shape).
Range of $x$: $-\infty < x \le \xi + \alpha / k$ if $k>0$; $-\infty < x < \infty$ if $k=0$; $\xi + \alpha / k \le x < \infty$ if $k<0$.< p="">
Probability density function:
Cumulative distribution function:
Quantile function: $x(F)$ has no explicit analytical form.
$k=0$ is the Normal distribution with parameters $\xi$ and $alpha$.
L-moments
L-moments are defined for all values of $k$.
There are no simple expressions for the L-moment ratios $\tau_r$ with $r \ge 3$. Here we use the rational-function approximation given in Hosking and Wallis (1997, p. 199).
Parameters
The shape parameter $k$ is a function of $\tau_3$ alone. No explicit solution is possible. Here we use the approximation given in Hosking and Wallis (1997, p. 199).
Given $k$, the other parameters are given by
rnorm
, runif
, EXP
, GENLOGIS
, GENPAR
, GEV
, GUMBEL
, KAPPA
, P3
; DISTPLOTS
, GOFmontecarlo
, Lmoments
.data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)
camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.lognorm(ll[1],ll[2],ll[4])
f.lognorm(1800,parameters$xi,parameters$alfa,parameters$k)
F.lognorm(1800,parameters$xi,parameters$alfa,parameters$k)
invF.lognorm(0.7529877,parameters$xi,parameters$alfa,parameters$k)
Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k)
rand.lognorm(100,parameters$xi,parameters$alfa,parameters$k)
Rll <- regionalLmoments(x,fac); Rll
parameters <- par.lognorm(Rll[1],Rll[2],Rll[4])
Lmom.lognorm(parameters$xi,parameters$alfa,parameters$k)
Run the code above in your browser using DataLab