Anderson-Darling goodness of fit tests for Regional Frequency Analysis: Monte-Carlo method.
gofNORMtest (x)
gofEXPtest (x, Nsim=1000)
gofGUMBELtest (x, Nsim=1000)
gofGENLOGIStest (x, Nsim=1000)
gofGENPARtest (x, Nsim=1000)
gofGEVtest (x, Nsim=1000)
gofLOGNORMtest (x, Nsim=1000)
gofP3test (x, Nsim=1000)
gofNORMtest
tests the goodness of fit of a normal (Gauss) distribution with the sample x
.
gofEXPtest
tests the goodness of fit of a exponential distribution with the sample x
.
gofGUMBELtest
tests the goodness of fit of a Gumbel (EV1) distribution with the sample x
.
gofGENLOGIStest
tests the goodness of fit of a Generalized Logistic distribution with the sample x
.
gofGENPARtest
tests the goodness of fit of a Generalized Pareto distribution with the sample x
.
gofGEVtest
tests the goodness of fit of a Generalized Extreme Value distribution with the sample x
.
gofLOGNORMtest
tests the goodness of fit of a 3 parameters Lognormal distribution with the sample x
.
gofP3test
tests the goodness of fit of a Pearson type III (gamma) distribution with the sample x
.
They return the value
data sample
number of simulated samples from the hypothetical parent distribution
An introduction, analogous to the following one, on the Anderson-Darling test is available on https://en.wikipedia.org/wiki/Anderson-Darling_test.
Given a sample
The Anderson-Darling goodness of fit test measures the departure between the hypothetical distribution
The test statistic is:
The statistic
traceWminim
, roi
, HOMTESTS
.
x <- rnorm(30,10,1)
gofNORMtest(x)
x <- rand.gamma(50, 100, 15, 7)
gofP3test(x, Nsim=200)
x <- rand.GEV(50, 0.907, 0.169, 0.0304)
gofGEVtest(x, Nsim=200)
x <- rand.genlogis(50, 0.907, 0.169, 0.0304)
gofGENLOGIStest(x, Nsim=200)
x <- rand.genpar(50, 0.716, 0.418, 0.476)
gofGENPARtest(x, Nsim=200)
x <- rand.lognorm(50, 0.716, 0.418, 0.476)
gofLOGNORMtest(x, Nsim=200)
Run the code above in your browser using DataLab