Usage
gpr1sample(x, y, x.targets, noise = NULL, nsnoise = TRUE, nskernel = TRUE, expectedmll = FALSE, params = NULL, defaultparams = NULL, lbounds = NULL, ubounds = NULL, optim.restarts = 3, derivatives = FALSE)
Arguments
y
output values (same length as x
)
noise
observational noise (variance), either NULL, a constant scalar or a vector
nsnoise
estimate non-stationary noise from replicates, if possible (default)
nskernel
use non-stationary kernel
expectedmll
use an alternative expected mll optimization criteria
params
gaussian kernel parameters: (sigma.f, sigma.n, l, lmin, c)
defaultparams
initial parameters for optimization (5-length vector)
lbounds
lower bounds for parameters (5-length vector)
ubounds
upper bounds for parameters (5-length vector)
optim.restarts
restarts in the gradient ascent (default=3)
derivatives
compute also GP derivatives