Learn R Programming

nsgp (version 1.0.5)

gpr1sample: Perform one-sample GP regression

Description

Computes the optimal GP model by optimizing the marginal likelihood

Usage

gpr1sample(x, y, x.targets, noise = NULL, nsnoise = TRUE, nskernel = TRUE, expectedmll = FALSE, params = NULL, defaultparams = NULL, lbounds = NULL, ubounds = NULL, optim.restarts = 3, derivatives = FALSE)

Arguments

x
input points
y
output values (same length as x)
x.targets
target points
noise
observational noise (variance), either NULL, a constant scalar or a vector
nsnoise
estimate non-stationary noise from replicates, if possible (default)
nskernel
use non-stationary kernel
expectedmll
use an alternative expected mll optimization criteria
params
gaussian kernel parameters: (sigma.f, sigma.n, l, lmin, c)
defaultparams
initial parameters for optimization (5-length vector)
lbounds
lower bounds for parameters (5-length vector)
ubounds
upper bounds for parameters (5-length vector)
optim.restarts
restarts in the gradient ascent (default=3)
derivatives
compute also GP derivatives

Value

A gp-object (list) containing following elements
targets
data frame of predictions with points as rows and columns..
_$x
points
_$pmean
posterior mean of the gp
_$pstd
posterior standard deviation of the gp
_$noisestd
noises (variance)
_$mll
the MLL log likelihood ratio
_$emll
the EMLL log likelihood ratio
_$pc
the posterior concentration log likelihood ratio
_$npc
the noisy posterior concentration log likelihood ratio
cov
learned covariance matrix
mll
marginal log likelihood value
emll
expected marginal log likelihood value
kernel
the kernel matrix used
ekernel
the EMLL kernel matrix
params
the learned parameter vector:
_$sigma.f
kernel variance
_$sigma.n
kernel noise
_$l
maximum lengthscale
_$lmin
minimum lengthscale
_$c
curvature
x
the input points
y
the output values

Details

Parameter optimization performed through L-BFGS using analytical gradients with restarts. The input points x and output values y need to be matching length vectors. If replicates are provided, they are used to estimate dynamic observational noise.

The resulting GP model is encapsulated in the return object. The estimated posterior is in targets$pmean and targets$pstd for target points x.targets. Use plot.gp to visualize the GP.

See Also

gpr2sample plot.gp

Examples

Run this code
# load example data
data(toydata)

## Not run: can take sevaral minutes
#  # perform gpr
#  res = gpr1sample(toydata$ctrl$x, toydata$ctrl$y, seq(0,22,0.1))
#  print(res)## End(Not run)

# pre-computed toydata model
data(toygps)
print(toygps$ctrlmodel)

Run the code above in your browser using DataLab