Learn R Programming

nsgp (version 1.0.5)

gpr2sample: Performs two-sample GP regression

Description

Performs gaussian process regression for two time-series: control and case. A third null GP model is learned that assumes both data coming from same process. Various likelihood ratios between the null and individual models are estimated to distinguish when case and control processes are significantly different. Use plot.gppack to visualize the models.

Usage

gpr2sample(x.ctrl, y.ctrl, x.case = NULL, y.case, x.targets, noise.ctrl = NULL, noise.case = NULL, nsnoise = TRUE, nskernel = TRUE, expectedmll = FALSE, params.ctrl = NULL, params.case = NULL, defaultparams = NULL, lbounds = NULL, ubounds = NULL, lockatzero = FALSE, optim.restarts = 3, derivatives = FALSE)

Arguments

x.ctrl
input points (control)
y.ctrl
output values (control)
x.case
input points (case)
y.case
output values (case)
x.targets
target points
noise.ctrl
observational noise
noise.case
observational noise
nsnoise
estimate non-stationary noise function from replicates, if available
nskernel
use non-stationary kernel (default)
expectedmll
use expected MLL optimization criteria
params.ctrl
kernel parameters (control)
params.case
kernel parameters (case)
defaultparams
initial parameters for optimization
lbounds
lower bounds for parameter optimization
ubounds
upper bounds for parameter optimization
lockatzero
estimate a pseudo-observation for time 0
optim.restarts
restarts in the gradient ascent (default=3)
derivatives
compute also GP derivatives

Value

a gppack-object that contains
ctrlmodel
the gp-object corresponding to the control data
casemodel
the gp-object corresponding to the case data
nullmodel
the gp-object corresponding to the shared null data
ratios
the log likelihood ratios between the control and case against the null model, contains..
______$mll
marginal log likelihood ratio
______$emll
expected marginal log likelihood ratio
______$pc
log posterior concentration ratio
______$npc
log noisy posterior concentration ratio

Details

The control and case do not need have same amount of points. The resulting gppack object contains the three learned models and the likelihood ratios along x.targets.

See Also

gpr1sample plot.gppack

Examples

Run this code
# read toy data
data(toydata)

## Not run: can take several minutes
#  # perform two-sample regression
#  res = gpr2sample(toydata$ctrl$x, toydata$ctrl$y, toydata$case$x, toydata$case$y, seq(0,22,0.1))
#  print(res)## End(Not run)

# pre-computed model for toydata
data(toygps)
print(toygps)

Run the code above in your browser using DataLab