Learn R Programming

nsgp (version 1.0.5)

gpr_posterior: GPR posterior

Description

a simple GPR posterior distribution, no parameter learning

Usage

gpr_posterior(x, y, x.targets, noise, kernelfunc, derivatives = FALSE)

Arguments

x
obs timepoints
y
obs values
x.targets
target timepoints
noise
noise std, a single value or a vector
kernelfunc
a kernel function of (x1,x2) (returns a matrix)
derivatives
compute also derivatives

Value

a gpsimple-object with fields
x
timepoints
mean
GP mean
cov
covariance matrix
noisestd
vector of noise std's
mll
marginal log likelihood
x.obs
original observation times
y.obs
original observation values