Detect occurrences in heavily human-impacted environments
humanDetection(
df,
xf,
yf,
method = "all",
ras.hii,
.th.human.influence,
.points.proj4string,
do = TRUE,
verbose = FALSE,
output.dir
)data.frame
Data.frame of species occurrences
the field in the data frame containing the x coordinates
the field in the data frame containing the y coordinates
character. Indicate which tests to use. Default 'all'. See Details
raster. Raster map of human influence index use
numeric. Threhold to identify places of high human influence
proj4string argument for df
logical. Should range analysis be performed? Default TRUE
logical. Print messages? Default FALSE
character. Output directory
Josep M Serra-Diaz (pep.serradiaz@agroparistech.fr). A Zizka (CoordinateCleaner functions)
It uses several methods to detect records in high human influence records.
Current implemented methods are:
'hii' using a raster and a threhold of human influence
'urban' using a layer of urban areas. Method implemented in CoordinateCleaner package.
cc_urb for CoordinateCleaner functions
Other analysis:
.nearestcell3(),
centroidDetection(),
countryStatusRangeAnalysis(),
duplicatesexcludeAnalysis(),
geoEnvAccuracy()