# \donttest{
set.seed(1)
# Generate a random dataset (20 species * 2 sites * 2 reps)
I <- 20 # Number of species
J <- 2 # Number of sites
K <- 2 # Number of replicates
data <- occumbData(
y = array(sample.int(I * J * K), dim = c(I, J, K)))
# Fitting a null model
fit <- occumb(data = data)
## Estimate expected utility
# Arbitrary J, K, and N values
(util1 <- eval_util_R(expand.grid(J = 1:3, K = 1:3, N = c(1E3, 1E4, 1E5)),
fit))
# J, K, and N values under specified budget and cost
(util2 <- eval_util_R(list_cond_R(budget = 50000,
lambda1 = 0.01,
lambda2 = 5000,
lambda3 = 5000),
fit))
# K values restricted
(util3 <- eval_util_R(list_cond_R(budget = 50000,
lambda1 = 0.01,
lambda2 = 5000,
lambda3 = 5000,
K = 1:5),
fit))
# J and K values restricted
(util4 <- eval_util_R(list_cond_R(budget = 50000,
lambda1 = 0.01,
lambda2 = 5000,
lambda3 = 5000,
J = 1:3, K = 1:5),
fit))
# theta and phi values supplied
(util5 <- eval_util_R(list_cond_R(budget = 50000,
lambda1 = 0.01,
lambda2 = 5000,
lambda3 = 5000,
J = 1:3, K = 1:5),
fit,
theta = array(0.5, dim = c(4000, I, J)),
phi = array(1, dim = c(4000, I, J))))
# psi, theta, and phi values, but no fit object supplied
(util6 <- eval_util_R(list_cond_R(budget = 50000,
lambda1 = 0.01,
lambda2 = 5000,
lambda3 = 5000,
J = 1:3, K = 1:5),
fit = NULL,
psi = array(0.9, dim = c(4000, I, J)),
theta = array(0.9, dim = c(4000, I, J)),
phi = array(1, dim = c(4000, I, J))))
# }
Run the code above in your browser using DataLab