powered by
construtor for subclass 'Chan' in class 'ChangepointDetector'
new_Chan(dim, thresh, p0, w, lambda)
Data dimension, all new data must be of this dimension
Detection threshold. A positive real number.
A sparsity parameter between 0 and 1. It is the assumed fraction of nonzero coordinates of change. Default to 1/sqrt(dim).
1/sqrt(dim)
Window size parameter. Number of most recent data points to keep track in memory. Default is 200.
A tuning parameter used by the Chan (2017) method. Default is sqrt(8)-2.
sqrt(8)-2
An object of S3 subclass 'Chan' in class 'ChangepointDetector'.
It is preferred to use ChangepointDetector for construction.
ChangepointDetector
Chan, H. P. (2017) Optimal sequential detection in multi-stream data. Ann. Statist., 45, 2736--2763.
# NOT RUN { detector <- new_Chan(dim=100, thresh=8.7, p0=0.1, w=200, lambda=sqrt(8)-2) # }
Run the code above in your browser using DataLab