# Unconstrained optimal design #---------
myod1 <- od.2m(icc = 0.2, omega = 0.02, r12 = 0.5, r22m = 0.5,
c1 = 1, c2 = 10, c1t = 10,
varlim = c(0, 0.005))
myod1$out # n = 20, p =0.37
# Plots by p
myod1 <- od.2m(icc = 0.2, omega = 0.02,
r12 = 0.5, r22m = 0.5,
c1 = 1, c2 = 10, c1t = 10,
varlim = c(0, 0.005), plot.by = list(p = 'p'))
# Constrained optimal design with p = 0.5 #---------
myod2 <- od.2m(icc = 0.2, omega = 0.02,
r12 = 0.5, r22m = 0.5,
c1 = 1, c2 = 10, c1t = 10,
varlim = c(0, 0.005), p = 0.5)
myod2$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod2)
myre$re # RE = 0.86
# Constrained optimal design with n = 5 #---------
myod3 <- od.2m(icc = 0.2, omega = 0.02,
r12 = 0.5, r22m = 0.5, c1 = 1, c2 = 10,
c1t = 10, varlim = c(0, 0.005), n = 5)
myod3$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod3)
myre$re # RE = 0.79
# Constrained n and p, no calculation performed #---------
myod4 <- od.2m(icc = 0.2, omega = 0.02, r12 = 0.5, r22m = 0.5,
c1 = 1, c2 = 10, c1t = 10,
varlim = c(0, 0.005), p = 0.5, n = 10)
myod4$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod4)
myre$re # RE = 0.84
Run the code above in your browser using DataLab