# Unconstrained optimal design #---------
myod1 <- od.3(icc2 = 0.2, icc3 = 0.1, r12 = 0.5, r22 = 0.5, r32 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c1t = 1, c2t = 50, c3t = 250,
varlim = c(0.005, 0.025))
myod1$out # output
# Plots by p and J
myod1 <- od.3(icc2 = 0.2, icc3 = 0.1, r12 = 0.5, r22 = 0.5, r32 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c1t = 1, c2t = 50, c3t = 250,
varlim = c(0.005, 0.025), plot.by = list(p = 'p', J = 'J'))
# Constrained optimal design with J = 20 #---------
myod2 <- od.3(icc2 = 0.2, icc3 = 0.1, r12 = 0.5, r22 = 0.5, r32 = 0.5, J = 20,
c1 = 1, c2 = 5, c3 = 25, c1t = 1, c2t = 50, c3t = 250,
varlim = c(0, 0.025))
myod2$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod2)
myre$re # RE = 0.53
# Constrained optimal design with p = 0.5 #---------
myod3 <- od.3(icc2 = 0.2, icc3 = 0.1, r12 = 0.5, r22 = 0.5, r32 = 0.5, p = 0.5,
c1 = 1, c2 = 5, c3 = 25, c1t = 1, c2t = 50, c3t = 250,
varlim = c(0.005, 0.025))
myod3$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod3)
myre$re # RE = 0.84
# Constrained n, J and p, no calculation performed #---------
myod4 <- od.3(icc2 = 0.2, icc3 = 0.1, r12 = 0.5, r22 = 0.5, r32 = 0.5, n = 10, J = 10, p = 0.5,
c1 = 1, c2 = 5, c3 = 25, c1t = 1, c2t = 50, c3t = 250,
varlim = c(0, 0.025))
myod4$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod4)
myre$re # RE = 0.61
Run the code above in your browser using DataLab