# Unconstrained optimal design #---------
myod1 <- od.4(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c4 = 125,
c1t = 1, c2t = 50, c3t = 250, c4t = 2500,
varlim = c(0, 0.01))
myod1$out # output
# Plots by p and K
myod1 <- od.4(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c4 = 125,
c1t = 1, c2t = 50, c3t = 250, c4t = 2500,
varlim = c(0, 0.01), plot.by = list(p = 'p', K = 'K'))
# Constrained optimal design with p = 0.5 #---------
myod2 <- od.4(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, p = 0.5,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c4 = 125,
c1t = 1, c2t = 50, c3t = 250, c4t = 2500,
varlim = c(0, 0.01))
myod2$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod2)
myre$re # RE = 0.78
# Constrained optimal design with K = 20 #---------
myod3 <- od.4(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, K = 20,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c4 = 125,
c1t = 1, c2t = 50, c3t = 250, c4t = 2500,
varlim = c(0, 0.01))
myod3$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod3)
myre$re # RE = 0.67
# Constrained n, J, K and p, no calculation performed #---------
myod4 <- od.4(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05,
r12 = 0.5, n = 10, J = 10, K = 20, p = 0.5,
r22 = 0.5, r32 = 0.5, r42 = 0.5,
c1 = 1, c2 = 5, c3 = 25, c4 = 125,
c1t = 1, c2t = 50, c3t = 250, c4t = 2500,
varlim = c(0, 0.01))
myod4$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod4)
myre$re # RE = 0.27
Run the code above in your browser using DataLab