# Unconstrained optimal design #---------
myod1 <- od.4m(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, omega = 0.02,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42m = 0.5,
c1 = 1, c2 = 5, c3 = 25,
c1t = 1, c2t = 50, c3t = 250, c4 = 500,
varlim = c(0, 0.005))
myod1$out # output
# Plots by p and K
myod1 <- od.4m(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, omega = 0.02,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42m = 0.5,
c1 = 1, c2 = 5, c3 = 25,
c1t = 1, c2t = 50, c3t = 250, c4 = 500,
varlim = c(0, 0.005), plot.by = list(p = 'p', K = 'K'))
# Constrained optimal design with p = 0.5 #---------
myod2 <- od.4m(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, omega = 0.02,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42m = 0.5,
c1 = 1, c2 = 5, c3 = 25,
c1t = 1, c2t = 50, c3t = 250, c4 = 500,
varlim = c(0, 0.005), p = 0.5)
myod2$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod2)
myre$re # RE = 0.88
# Constrained optimal design with J = 20 #---------
myod3 <- od.4m(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, omega = 0.02,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42m = 0.5,
c1 = 1, c2 = 5, c3 = 25,
c1t = 1, c2t = 50, c3t = 250, c4 = 500,
varlim = c(0, 0.005), J = 20)
myod3$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod3)
myre$re # RE = 0.58
# Constrained n, J, K and p, no calculation performed #---------
myod4 <- od.4m(icc2 = 0.2, icc3 = 0.1, icc4 = 0.05, omega = 0.02,
r12 = 0.5, r22 = 0.5, r32 = 0.5, r42m = 0.5,
c1 = 1, c2 = 5, c3 = 25,
c1t = 1, c2t = 50, c3t = 250, c4 = 500,
varlim = c(0, 0.005), p = 0.5, n = 15, J = 20, K = 5)
myod4$out
# Relative efficiency (RE)
myre <- re(od = myod1, subod= myod4)
myre$re # RE = 0.46
Run the code above in your browser using DataLab