# Unconstrained optimal design
myod1 <- od.1(r12 = 0.5, c1 = 1, c1t = 5, varlim = c(0, 0.2))
myod1$out # p = 0.31
# ------- Power analyses by default considering costs and budget -------
# Required budget and sample size
mym.1 <- power.1(expr = myod1, d = 0.2, q = 1, power = 0.8)
mym.1$out # m = 1032 n = 461
# mym.1$par # parameters and their values used for the function
# Or, equivalently, specify every argument in the function
mym.1 <- power.1(d = 0.2, power = 0.8, c1 = 1, c1t = 5,
r12 = 0.5, p = 0.31, q = 1)
# Required budget and sample size with constrained p
mym.2 <- power.1(expr = myod1, d = 0.2, q = 1, power = 0.8,
constraint = list(p = 0.5))
mym.2$out # m = 1183, n = 394
# Power calculation
mypower <- power.1(expr = myod1, q = 1, d = 0.2, m = 1032)
mypower$out # power = 0.80
# Power calculation under constrained p (p = 0.5)
mypower.1 <- power.1(expr = myod1, q = 1, d = 0.2, m = 1032,
constraint = list(p = 0.5))
mypower.1$out # power = 0.74
# MDES calculation
mymdes <- power.1(expr = myod1, q = 1, power = 0.80, m = 1032)
mymdes$out # d = 0.20
# ------- Conventional power analyses with cost.model = FALSE-------
# Required sample size n
myn <- power.1(cost.model = FALSE, expr = myod1, d = 0.2, q = 1, power = 0.8)
myn$out # n = 461
# myn$par # parameters and their values used for the function
# Or, equivalently, specify every argument in the function
myn <- power.1(cost.model = FALSE, d = 0.2, power = 0.8,
r12 = 0.5, p = 0.31, q = 1)
# Power calculation
mypower1 <- power.1(cost.model = FALSE, expr = myod1, n = 461, d = 0.2, q = 1)
mypower1$out # power = 0.80
# MDES calculation
mymdes1 <- power.1(cost.model = FALSE, expr = myod1, n = 461, power = 0.8, q = 1)
mymdes1$out # d = 0.20
Run the code above in your browser using DataLab