Learn R Programming

omock

The primary objective of the omock package is to generate mock OMOP CDM (Observational Medical Outcomes Partnership Common Data Model) data to facilitating the testing of various packages within the OMOPverse ecosystem. For more information on the package please see our paper in Journal of Open Source Software.

#> To cite omock in publications please use:
#> 
#>   Du, Mike, Mercadé-Besora, Núria, Alcalde-Herraiz, Marta, Chen,
#>   Xihang, Guo, Yuchen, López-Güell, Kim, Burn, Edward, Català, Martí
#>   (2025). "omock: A R package for Mock Data Generation for the
#>   Observational Medical Outcomes Partnership Common Data Model."
#>   _Journal of Open Source Software_. doi:10.21105/joss.08178
#>   <https://doi.org/10.21105/joss.08178>,
#>   <https://joss.theoj.org/papers/10.21105/joss.08178>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {omock: A R package for Mock Data Generation for the Observational Medical Outcomes Partnership Common Data Model},
#>     author = {{Du} and {Mike} and {Mercadé-Besora} and {Núria} and {Alcalde-Herraiz} and {Marta} and {Chen} and {Xihang} and {Guo} and {Yuchen} and {López-Güell} and {Kim} and {Burn} and {Edward} and {Català} and {Martí}},
#>     journal = {Journal of Open Source Software},
#>     year = {2025},
#>     doi = {10.21105/joss.08178},
#>     url = {https://joss.theoj.org/papers/10.21105/joss.08178},
#>   }

Introduction

You can install the development version of omock using:

# install.packages("devtools")
devtools::install_github("OHDSI/omock")

Example

With omock we can quickly make a simple mock of OMOP CDM data.

library(omopgenerics)
library(omock)
library(dplyr)

We first start by making an empty cdm reference. This includes the person and observation tables (as they are required) but they are currently empty.

cdm <- emptyCdmReference(cdmName = "mock")
cdm$person %>%
  glimpse()
#> Rows: 0
#> Columns: 18
#> $ person_id                   <int> 
#> $ gender_concept_id           <int> 
#> $ year_of_birth               <int> 
#> $ month_of_birth              <int> 
#> $ day_of_birth                <int> 
#> $ birth_datetime              <date> 
#> $ race_concept_id             <int> 
#> $ ethnicity_concept_id        <int> 
#> $ location_id                 <int> 
#> $ provider_id                 <int> 
#> $ care_site_id                <int> 
#> $ person_source_value         <chr> 
#> $ gender_source_value         <chr> 
#> $ gender_source_concept_id    <int> 
#> $ race_source_value           <chr> 
#> $ race_source_concept_id      <int> 
#> $ ethnicity_source_value      <chr> 
#> $ ethnicity_source_concept_id <int>
cdm$observation_period %>%
  glimpse()
#> Rows: 0
#> Columns: 5
#> $ observation_period_id         <int> 
#> $ person_id                     <int> 
#> $ observation_period_start_date <date> 
#> $ observation_period_end_date   <date> 
#> $ period_type_concept_id        <int>

Once we have have our empty cdm reference, we can quickly add a person table with a specific number of individuals.

cdm <- cdm %>%
  omock::mockPerson(nPerson = 1000)

cdm$person %>%
  glimpse()
#> Rows: 1,000
#> Columns: 18
#> $ person_id                   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,…
#> $ gender_concept_id           <int> 8532, 8532, 8507, 8532, 8507, 8532, 8507, …
#> $ year_of_birth               <int> 1984, 1956, 1962, 1995, 1975, 1986, 1996, …
#> $ month_of_birth              <int> 9, 5, 1, 6, 5, 9, 10, 4, 3, 5, 6, 1, 3, 8,…
#> $ day_of_birth                <int> 4, 22, 23, 10, 4, 2, 2, 3, 17, 20, 15, 28,…
#> $ race_concept_id             <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ ethnicity_concept_id        <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ birth_datetime              <dttm> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
#> $ location_id                 <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ provider_id                 <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ care_site_id                <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ person_source_value         <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ gender_source_value         <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ gender_source_concept_id    <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ race_source_value           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ race_source_concept_id      <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ ethnicity_source_value      <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ ethnicity_source_concept_id <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…

We can then fill in the observation period table for these individuals.

cdm <- cdm %>%
  omock::mockObservationPeriod()

cdm$observation_period %>%
  glimpse()
#> Rows: 1,000
#> Columns: 5
#> $ person_id                     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1…
#> $ observation_period_start_date <date> 2013-01-17, 1980-12-24, 1977-07-10, 199…
#> $ observation_period_end_date   <date> 2013-04-23, 2014-03-25, 1988-06-02, 200…
#> $ observation_period_id         <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1…
#> $ period_type_concept_id        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

Copy Link

Version

Install

install.packages('omock')

Monthly Downloads

660

Version

0.6.1

License

Apache License (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Mike Du

Last Published

February 3rd, 2026

Functions in omock (0.6.1)

mockConcepts

Adds mock concept data to a concept table within a Common Data Model (CDM) object.
mockCohort

Generate Synthetic Cohort
mockCdmReference

Creates an empty CDM (Common Data Model) reference for a mock database.
mockConditionOccurrence

Generates a mock condition occurrence table and integrates it into an existing CDM object.
mockCdmFromDataset

Create a local cdm_reference from a dataset.
availableMockDatasets

List the available datasets
isMockDatasetDownloaded

Check if a certain dataset is downloaded.
mockCdmFromTables

Generates a mock CDM (Common Data Model) object based on existing CDM structures and additional tables.
mockDatasets

Available mock OMOP CDM Synthetic Datasets
downloadMockDataset

Download an OMOP Synthetic dataset.
mockProcedureOccurrence

Generates a mock procedure occurrence table and integrates it into an existing CDM object.
mockVisitOccurrence

Function to generate visit occurrence table
mockObservationPeriod

Generates a mock observation period table and integrates it into an existing CDM object.
mockDatasetsStatus

Check the availability of the OMOP CDM datasets.
mockDeath

Generates a mock death table and integrates it into an existing CDM object.
mockDrugExposure

Generates a mock drug exposure table and integrates it into an existing CDM object.
mockMeasurement

Generates a mock measurement table and integrates it into an existing CDM object.
mockObservation

Generates a mock observation table and integrates it into an existing CDM object.
mockDatasetsFolder

Deprecated
mockPerson

Generates a mock person table and integrates it into an existing CDM object.
mockVocabularySet

Creates an empty mock CDM database populated with various vocabulary tables set.
mockVocabularyTables

Creates a mock CDM database populated with various vocabulary tables.
reexports

Objects exported from other packages
omock-package

omock: Creation of Mock Observational Medical Outcomes Partnership Common Data Model