##Both examples given below are from the book written by Daniel and Cross (2013).
##They are One-way ANOVA examples, where it is not reasonable to assume equal variances.
###Example 1
library(onewaytests)
x <- factor(c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4))
y <- c(71.8,66.1,67.6,66.4,42.8,53.2,56.1,56.5,
72.5,62.9,58.9,69.3,47.1,86.6,56)
Example1 <- data.frame(y, x)
describe(y ~ x, data = Example1)
# \donttest{
out <- gp.test(y ~ x, data = Example1, alpha = 0.10)
paircomp(out)
gp.test(y ~ x, data = Example1, method = "GT_Fiducial")
# }
###Example 2
library(onewaytests)
x <- factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3))
y <- c(92,93,74,80.5,76,71,75.5,88.5,93,80.5,83,87,79,
78,100,76.5,68,81.5,75,76.5,70.5,69,73.8,74,80)
Example2 <- data.frame(y, x)
describe(y ~ x, data = Example2)
# \donttest{
out <- gp.test(y ~ x, data = Example2, method = "GT_Fiducial", alpha = 0.10)
paircomp(out)
out <- gp.test(y ~ x, data = Example2,
method = "GT_Bootstrap", alpha = 0.10)
paircomp(out)
# }
Run the code above in your browser using DataLab