Learn R Programming

onlinePCA (version 1.3.2)

Online Principal Component Analysis

Description

Online PCA for multivariate and functional data using perturbation methods, low-rank incremental methods, and stochastic optimization methods.

Copy Link

Version

Install

install.packages('onlinePCA')

Monthly Downloads

170

Version

1.3.2

License

GPL-3

Maintainer

David Degras

Last Published

November 15th, 2023

Functions in onlinePCA (1.3.2)

updateCovariance

Update the Sample Covariance Matrix
snlpca

Subspace Network Learning PCA
incRpca.rc

Incremental PCA With Reduced Complexity
perturbationRpca

Recursive PCA using a rank 1 perturbation method
sgapca

Stochastic Gradient Ascent PCA
updateMean

Update the Sample Mean Vector
onlinePCA-package

Online Principal Component Analysis
secularRpca

Recursive PCA Using Secular Equations
incRpca

Incremental PCA
ghapca

Generalized Hebbian Algorithm for PCA
fd2coef

Compute the coefficients of functional data in a B-spline basis
bsoipca

Block Stochastic Orthononal Iteration (BSOI)
incRpca.block

Incremental PCA with Block Update
coef2fd

Recover functional data from their B-spline coefficients
ccipca

Candid Covariance-Free Incremental PCA
create.basis

Create a smooth B-spline basis
batchpca

Batch PCA
impute

BLUP Imputation of Missing Values