# NOT RUN {
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a simple model
model <- forecastmodel$new()
model$output <- "y"
model$add_inputs(Ta = "lp(Ta, a1=0.9)",
mu = "one()")
# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6
# Now we can fit the model with RLS and get the model validation analysis data
fit <- lm_fit(prm=NA, model=model, data=D)
# What did we get back?
names(fit)
class(fit)
# The one-step forecast
plot(D$y, type="l")
lines(lagvec(fit$Yhat$k1,-1), col=2)
# Get the residuals
plot(residuals(fit)$h1)
# Score for each horizon
score(residuals(fit))
# The lm_fit don't put anything in this field
fit$Lfitval
# Find the lm fits here
model$Lfits
# See result for k=1 horizon
summary(model$Lfits$k1)
# Some diurnal pattern is present
acf(residuals(fit)$h1, na.action=na.pass, lag.max=96)
# Run with other parameters and return the RMSE
lm_fit(c(Ta__a1=0.8), model, D, scorefun=rmse, returnanalysis=FALSE)
lm_fit(c(Ta__a1=0.9), model, D, scorefun=rmse, returnanalysis=FALSE)
# }
Run the code above in your browser using DataLab