library(dplyr)
library(ggplot2)
library(tidyr)
# List percentage of population change from 1960 to 2020
world_pop %>%
  mutate(percent_change = round((year_2020 - year_1960) / year_2020 * 100, 2)) %>%
  mutate(rank_pop_change = round(rank(-percent_change)), 0) %>%
  select(rank_pop_change, country, percent_change) %>%
  arrange(rank_pop_change)
# Graph population in millions by decade for specified countries
world_pop %>%
  select(
    country, year_1960, year_1970, year_1980, year_1990,
    year_2000, year_2010, year_2020
    ) %>%
  filter(country %in% c("China", "India", "United States")) %>%
  pivot_longer(
    cols = c(year_1960, year_1970, year_1980, year_1990, year_2000, year_2010, year_2020),
    names_to = "year",
    values_to = "population"
  ) %>%
  mutate(year = as.numeric(gsub("year_", "", year))) %>%
  ggplot(aes(year, population, color = country)) +
  geom_point() +
  geom_smooth(method = "loess", formula = "y ~ x") +
  labs(
    title = "Population",
    subtitle = "by Decade",
    x = "Year",
    y = "Population (in millions)",
    color = "Country"
  )
Run the code above in your browser using DataLab