Learn R Programming

optextras (version 2013-10.27)

hesschk: Run tests, where possible, on user objective function and (optionally) gradient and hessian

Description

hesschk checks a user-provided R function, ffn.

Usage

hesschk(xpar, ffn, ggr, hhess, trace=0, testtol=(.Machine$double.eps)^(1/3), ...)

Arguments

xpar
parameters to the user objective and gradient functions ffn and ggr
ffn
User-supplied objective function
ggr
User-supplied gradient function
hhess
User-supplied Hessian function
trace
set >0 to provide output from grchk to the console, 0 otherwise
testtol
tolerance for equality tests
...
optional arguments passed to the objective function.

Value

  • The function returns a single object hessOK which is TRUE if the analytic Hessian code returns a Hessian matrix that is "close" to the numerical approximation obtained via numDeriv; FALSE otherwise.

    hessOK is returned with the following attributes:

    • "nullhess"
    {Set TRUE if the user does not supply a function to compute the Hessian.}

  • "asym"Set TRUE if the Hessian does not satisfy symmetry conditions to within a tolerance. See the hesschk for details.
  • "ha"The analytic Hessian computed at paramters xpar using hhess.
  • "hn"The numerical approximation to the Hessian computed at paramters xpar.
  • "msg"A text comment on the outcome of the tests.

Details

ll{ Package: hesschk Depends: R (>= 2.6.1) License: GPL Version 2. } numDeriv is used to compute a numerical approximation to the Hessian matrix. If there is no analytic gradient, then the hessian() function from numDeriv is applied to the user function ffn. Otherwise, the jacobian() function of numDeriv is applied to the ggr function so that only one level of differencing is used.

Examples

Run this code
# genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
	n <- length(x)
        if(is.null(gs)) { gs=100.0 }
	fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
        return(fval)
}

genrose.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
	n <- length(x)
        if(is.null(gs)) { gs=100.0 }
	gg <- as.vector(rep(0, n))
	tn <- 2:n
	tn1 <- tn - 1
	z1 <- x[tn] - x[tn1]^2
	z2 <- 1 - x[tn]
	gg[tn] <- 2 * (gs * z1 - z2)
	gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
	return(gg)
}

genrose.h <- function(x, gs=NULL) { ## compute Hessian
   if(is.null(gs)) { gs=100.0 }
	n <- length(x)
	hh<-matrix(rep(0, n*n),n,n)
	for (i in 2:n) {
		z1<-x[i]-x[i-1]*x[i-1]
#		z2<-1.0-x[i]
                hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
                hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
                hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
                hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
	}
        return(hh)
}

trad<-c(-1.2,1)
ans100<-hesschk(trad, genrose.f, genrose.g, genrose.h, trace=1)
print(ans100)
ans10<-hesschk(trad, genrose.f, genrose.g, genrose.h, trace=1, gs=10)
print(ans10)

Run the code above in your browser using DataLab