grchk
checks a user-provided R function, ffn
.
grchk(xpar, ffn, ggr, trace=0, testtol=(.Machine$double.eps)^(1/3), ...)
parameters to the user objective and gradient functions ffn and ggr
User-supplied objective function
User-supplied gradient function
set >0 to provide output from grchk to the console, 0 otherwise
tolerance for equality tests
optional arguments passed to the objective function.
grchk
returns a single object gradOK
which is true if the differences
between analytic and approximated gradient are small as measured by the tolerance
testtol
.
This has attributes "ga" and "gn" for the analytic and numerically approximated gradients.
At the time of preparation, there are no checks for validity of the gradient code in
ggr
as in the function fnchk
.
Package: | grchk |
Depends: | R (>= 2.6.1) |
License: | GPL Version 2. |
numDeriv
is used to numerically approximate the gradient of function ffn
and compare this to the result of function ggr
.
# NOT RUN {
# Would like examples of success and failure. What about "near misses"??
cat("Show how grchk works\n")
require(optextras)
require(numDeriv)
# require(optimx)
jones<-function(xx){
x<-xx[1]
y<-xx[2]
ff<-sin(x*x/2 - y*y/4)*cos(2*x-exp(y))
ff<- -ff
}
jonesg <- function(xx) {
x<-xx[1]
y<-xx[2]
gx <- cos(x * x/2 - y * y/4) * ((x + x)/2) * cos(2 * x - exp(y)) -
sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * 2)
gy <- sin(x * x/2 - y * y/4) * (sin(2 * x - exp(y)) * exp(y)) - cos(x *
x/2 - y * y/4) * ((y + y)/4) * cos(2 * x - exp(y))
gg <- - c(gx, gy)
}
jonesg2 <- function(xx) {
gx <- 1
gy <- 2
gg <- - c(gx, gy)
}
xx <- c(1, 2)
gcans <- grchk(xx, jones, jonesg, trace=1, testtol=(.Machine$double.eps)^(1/3))
gcans
gcans2 <- grchk(xx, jones, jonesg2, trace=1, testtol=(.Machine$double.eps)^(1/3))
gcans2
# }
Run the code above in your browser using DataLab