# 2PL-models for two items; parameters (a, b)=(1.6, -1) and (1.6, 1), respectively
ip <- cbind(c(1.6, 1.6),c(-1, 1))
yyy <- optical(ip)
# Table of interval boundaries for D-optimal design with items and
# probabilities (expected proportion of examinees in this interval)
yyy$ht
# \donttest{
# 1PL-models with common discrimination parameter for two items
# (model assumption is that both have same discrimination);
# parameters (a, b)=(1.6, -1) and (1.6, 1), respectively;
# NA for discrimination means that item has same parameter as preceeding item
ip <- cbind(c(1.6, NA), c(-1, 1))
yyy <- optical(ip)
# Table of interval boundaries for D-optimal design with items and
# probabilities (expected proportion of examinees in this interval)
yyy$ht
# 3PL-models for three items; parameters (a, b, c)=(1, 2, 2.5),
# (-1.5, 0.5, 2) and (0.2, 0.1, 0.05), respectively.
ip <- cbind(c(1, 2, 2.5),c(-1.5, 0.5, 2),c(0.2, 0.1, 0.05))
yyy <- optical(ip)
# Table of interval boundaries for D-optimal design with items and
# probabilities (expected proportion of examinees in this interval)
yyy$ht
# }
Run the code above in your browser using DataLab