# NOT RUN {
### Fit a simple linear regression with RMSE as cost function
require(optimg)
# Predictor
x <- seq(-3,3,len=100)
# Criterion
y <- rnorm(100, 2 + {1.2*x}, 1)
# RMSE cost function
fn <- function(par, X) {
mu <- par[1] + {par[2] * X}
rmse <- sqrt(mean({y-mu}^2))
return(rmse)
}
# Compare optimization methods
optim(c(0,0),fn,X=x,method="Nelder-Mead")
optim(c(0,0),fn,X=x,method="BFGS")
optim(c(0,0),fn,X=x,method="CG")
optim(c(0,0),fn,X=x,method="L-BFGS-B")
optimg(c(0,0),fn,X=x,method="ADAM")
optimg(c(0,0),fn,X=x,method="STGD")
# }
Run the code above in your browser using DataLab