predict.clm2

Predict Method for CLM fits

Obtains predictions from a cumulative link (mixed) model.

Keywords
internal
Usage
# S3 method for clm2
predict(object, newdata, ...)

Arguments
object

a fitted object of class inheriting from clm2 including clmm2 objects.

newdata

optionally, a data frame in which to look for variables with which to predict. Observe that the response variable should also be present.

further arguments passed to or from other methods.

Details

This method does not duplicate the behavior of predict.polr in package MASS which produces a matrix instead of a vector of predictions. The behavior of predict.polr can be mimiced as shown in the examples.

If newdata is not supplied, the fitted values are obtained. For clmm2 fits this means predictions that are controlled for the observed value of the random effects. If the predictions for a random effect of zero, i.e. an average 'subject', are wanted, the same data used to fit the model should be supplied in the newdata argument. For clm2 fits those two sets of predictions are identical.

Value

A vector of predicted probabilities.

See Also

clm2, clmm2.

Aliases
  • predict.clm2
  • predict.clmm2
Examples
# NOT RUN {
options(contrasts = c("contr.treatment", "contr.poly"))

## More manageable data set for less voluminous printing:
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))
dat26

m1 <- clm2(sureness ~ prod, scale = ~prod, data = dat26,
          weights = wghts, link = "logistic")
predict(m1)

mN1 <-  clm2(sureness ~ 1, nominal = ~prod, data = dat26,
            weights = wghts)
predict(mN1)

predict(update(m1, scale = ~.-prod))


#################################
## Mimicing the behavior of predict.polr:
if(require(MASS)) {
    ## Fit model from polr example:
    fm1 <- clm2(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
    predict(fm1)

    set.seed(123)
    nlev <- 3
    y <- gl(nlev, 5)
    x <- as.numeric(y) + rnorm(15)
    fm.clm <- clm2(y ~ x)
    fm.polr <- polr(y ~ x)

    ## The equivalent of predict.polr(object, type = "probs"):
    (pmat.polr <- predict(fm.polr, type = "probs"))
    ndat <- expand.grid(y = gl(nlev,1), x = x)
    (pmat.clm <- matrix(predict(fm.clm, newdata = ndat), ncol=nlev,
                        byrow = TRUE))
    all.equal(c(pmat.clm), c(pmat.polr), tol = 1e-5) # TRUE

    ## The equivalent of predict.polr(object, type = "class"):
    (class.polr <- predict(fm.polr))
    (class.clm <- factor(apply(pmat.clm, 1, which.max)))
    all.equal(class.clm, class.polr) ## TRUE
}

# }
Documentation reproduced from package ordinal, version 2019.12-10, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.