# NOT RUN {
# loading the real dataset
data("dataqol.classif")
set.seed(5)
# loading the ordinal data
M <- as.matrix(dataqol.classif[,2:29])
# creating the classes values
y <- as.vector(dataqol.classif$death)
# sampling datasets for training and to predict
nb.sample <- ceiling(nrow(M)*2/3)
sample.train <- sample(1:nrow(M), nb.sample, replace=FALSE)
M.train <- M[sample.train,]
M.validation <- M[-sample.train,]
nb.missing.validation <- length(which(M.validation==0))
m <- c(4)
M.validation[which(M.validation==0)] <- sample(1:m, nb.missing.validation,replace=TRUE)
y.train <- y[sample.train]
y.validation <- y[-sample.train]
# configuration for SEM algorithm
nbSEM=50
nbSEMburn=40
nbindmini=1
init="kmeans"
# number of classes to predict
kr <- 2
# different kc to test with cross-validation
kcol <- 1
res <- bosclassif(x=M.train,y=y.train,kr=kr,kc=kcol,m=m,
nbSEM=nbSEM,nbSEMburn=nbSEMburn,
nbindmini=nbindmini,init=init)
predictions <- predict(res, M.validation)
# }
Run the code above in your browser using DataLab