Learn R Programming

ordinalCont (version 0.4)

g_glf_inv: Inverse of generalized logistic g function

Description

Inverse of a parametric version of the g function following Richards (1959): $$g^{-1}(W) = \left( \frac{e^{B(W-M)}}{T+e^{B(W-M)}} \right)^{\frac{1}{T}}$$

Usage

g_glf_inv(W, par)

Arguments

W
vector of scores on the latent scale $(-\infty,\infty)$
par
vector of 3 elements: M, the offset of the curve, B, the slope of the curve, and T, the symmetry of the curve

Value

  • A vector of length equal to the length of W, with values $g^{-1}(W)$

References

Richards, F. (1959). A flexible growth function for empirical use, Journal of Experimental Botany, 10, 290-301.

See Also

g_glf,dg_glf