g_glf_inv: Inverse of generalized logistic g function
Description
Inverse of a parametric version of the g function
following Richards (1959):
$$g^{-1}(W) = \left( \frac{e^{B(W-M)}}{T+e^{B(W-M)}} \right)^{\frac{1}{T}}$$
Usage
g_glf_inv(W, par)
Arguments
W
vector of scores on the latent scale $(-\infty,\infty)$
par
vector of 3 elements: M, the offset of the curve, B, the slope of the curve, and T, the symmetry
of the curve
Value
A vector of length equal to the length of W, with values $g^{-1}(W)$
References
Richards, F. (1959). A flexible growth function for empirical use,
Journal of Experimental Botany, 10, 290-301.