The direct learning optimization function for personalized dose finding.
pdose_direct_solver(
B,
X,
A,
a_dist,
a_seq,
R,
lambda,
bw,
rho,
eta,
gamma,
tau,
epsilon,
btol,
ftol,
gtol,
maxitr,
verbose,
ncore
)
The optimizer B
for the esitmating equation.
A matrix of the parameters B
, the columns are subject to the orthogonality constraint
The covariate matrix
observed dose levels
A kernel distance matrix for the observed dose and girds of the dose levels
A grid of dose levels
The perosnalzied medicine reward
The penalty for the GCV for the kernel ridge regression
A Kernel bandwidth, assuming each variable have unit variance
(don't change) Parameter for control the linear approximation in line search
(don't change) Factor for decreasing the step size in the backtracking line search
(don't change) Parameter for updating C by Zhang and Hager (2004)
(don't change) Step size for updating
(don't change) Parameter for approximating numerical gradient
(don't change) The $B$
parameter tolerance level
(don't change) Estimation equation 2-norm tolerance level
(don't change) Gradient tolerance level
Maximum number of iterations
Should information be displayed
Zhou, W., Zhu, R., & Zeng, D. (2021). A parsimonious personalized dose-finding model via dimension reduction. Biometrika, 108(3), 643-659. DOI: tools:::Rd_expr_doi("10.1093/biomet/asaa087")