# NOT RUN {
## Load the data and its label
data(bankData)
data(bankLabels)
## The PrepData function should only need to be run once on a dataset,
## after that vlm can be run with the argument dataNeedPrep = FALSE
bankData <- PrepData(bankData, dateNm = "date", dateGp = "months",
dateGpBp = "quarters")
bankLabels <- PrepLabels(bankLabels)
# }
# NOT RUN {
vlm(dataFl = bankData, dateNm = "date", labelFl = bankLabels,
sortFn = "OrderByR2", dateGp = "months", dateGpBp = "quarters",
outFl = "bank")
## If csv files of summary statistics are not need, set genCSV = FALSE
vlm(dataFl = bankData, dateNm = "date", labelFl = bankLabels, genCSV = FALSE,
sortFn = "OrderByR2", dateGp = "months", dateGpBp = "quarters",
outFl = "bank")
## If weights are provided, they will be used in all statistical calculations
bankData[, weight := rnorm(.N, 1, .1)]
vlm(dataFl = bankData, dateNm = "date", labelFl = bankLabels,
dateGp = "months", dateGpBp = "quarters", weightNm = "weight",
outFl = "bank")
## Customize plotting order by passing a vector of variable names to
## sortVars, but the "date" column must be excluded from sortVars
sortVars <- sort(bankLabels[varCol!="date", varCol])
vlm(dataFl = bankData, dateNm = "date", labelFl = bankLabels,
dateGp = "months", dateGpBp = "quarters", outFl = "bank",
sortVars = sortVars)
## Create plots for a specific variable using the varNms parameter
vlm(dataFl = bankData, dateNm = "date", labelFl = bankLabels,
dateGp = "months", dateGpBp = "quarters", outFl = "bank",
varNms = "age", sortVars = NULL)
# }
Run the code above in your browser using DataLab