Learn R Programming

pGRN (version 0.3.5)

pGRN: pGRN: creates gene regulatory network based on single cell pseudotime information

Description

Given single cell matrix and pseudotime, construct gene regulatory network (GRN)

Usage

pGRN(
  expression_matrix,
  pseudotime_list,
  method = "DTW",
  slide_window_size = 20,
  slide_step_size = 10,
  centrality_degree_mod = "out",
  components_mod = "weak",
  network_min_genes = 10,
  quantile_cutoff = 5,
  order = 1,
  cores = 1
)

Value

a list of tabl_graph objects

Arguments

expression_matrix

expression matrix data

pseudotime_list

list of pseudotime

method

method for GRN construction: DTW, granger

slide_window_size

sliding window size

slide_step_size

sliding window step size

centrality_degree_mod

(for DTW method) mode of centrality degree for popularity calculation

components_mod

(for DTW method) mode of sub-network extraction methods (weak or strong)

network_min_genes

minimal number of gene elements required for extracted sub-networks

quantile_cutoff

an integer value (1-99) for quantile cutoff

order

(for granger method) integer specifying the order of lags to include in the auxiliary regression

cores

number of cores for parallel computing

Examples

Run this code
example_data <- pGRNDB
expression_matrix <- example_data[["expression"]]
pseudotime_list <- example_data[["ptime"]]$PseudoTime

# try DTW method
nets <- pGRN(expression_matrix,
             pseudotime_list, 
             method= "DTW",
             quantile_cutoff=50,
             cores=1)
plot_network(nets[[1]])

# plot the network interactively
plot_network_i(nets[[1]])

Run the code above in your browser using DataLab