
Last chance! 50% off unlimited learning
Sale ends in
Function to summarise and plot probabilistic sensitivity analysis
summary_plot_psa(
result_psa_params_control,
result_psa_params_treat = NULL,
threshold = NULL,
comparator = NULL
)
plot of sensitivity analysis
result from probabilistic sensitivity analysis for first or control model
result from probabilistic sensitivity analysis for the comparative Markov model
threshold value of WTP
the strategy to be compared with
# \donttest{
param_list <- define_parameters(
cost_direct_med_A = 1701,
cost_direct_med_B = 1774, tpAtoA = 0.2,
tpAtoB = 0.5, tpAtoC = 0.3,
tpBtoB = 0.3, tpBtoC = 0.7,
tpCtoC = 1,cost_health_A = "cost_direct_med_A",
cost_health_B = "cost_direct_med_B")
sample_list <- define_parameters(cost_direct_med_A = "gamma(mean = 1701,
sd = sqrt(1701))")
A <- health_state("A", cost = "cost_health_A ", utility = 1)
B <- health_state("B", cost = "cost_health_B", utility = 1)
C <- health_state("C", cost = 0, utility = 0, absorb = "TRUE")
tmat <- rbind(c(1, 2, 3), c(NA, 4, 5), c(NA, NA, 6))
colnames(tmat) <- rownames(tmat) <- c("A", "B", "C")
tm <- populate_transition_matrix(3, tmat, c(
"tpAtoA", "tpAtoB", "tpAtoC", "tpBtoB", "tpBtoC", "tpCtoC"),
colnames(tmat))
health_states <- combine_state(A, B, C)
mono_strategy <- strategy(tm, health_states, "mono")
mono_markov <- markov_model(mono_strategy, 20, initial_state =c(1,0,0),
discount = c(0.06, 0),param_list)
param_table <- define_parameters_psa(param_list, sample_list)
result <- do_psa(mono_markov, param_table, 3)
result_plot <- summary_plot_psa(result, NULL, NULL, NULL)
param_list_comb <- define_parameters(
cost_direct_med_A = 1800, cost_direct_med_B = 1774, tpAtoA = 0.6,
tpAtoB = 0.1, tpAtoC = 0.3,tpBtoB = 0.3, tpBtoC = 0.7,tpCtoC = 1,
cost_health_A = "cost_direct_med_A",cost_health_B = "cost_direct_med_B")
comb_strategy <- strategy(tm, health_states, "comb")
comb_markov <- markov_model(comb_strategy, 20, c(1, 0, 0),
discount = c(0.06, 0), param_list)
param_table_comb <- define_parameters_psa(param_list_comb, sample_list)
result_comb <- do_psa(comb_markov, param_table_comb, 3)
summary_plot_psa(result, result_comb, 2000, "mono")
# }
Run the code above in your browser using DataLab