# NOT RUN {
data(status)
data(medical)
data(omics)
data(nutrition)
ktabX <- ktab.list.df(list(medical = medical[,1:10],
nutrition = nutrition[,1:10], omics = omics[,1:20]))
disjonctif <- (disjunctive(status))
dudiY <- dudi.pca(disjonctif , center = FALSE, scale = FALSE, scannf = FALSE)
bloYobs <- 2
ncpopt <- 1
modelembplsQ <- mbplsda(dudiY, ktabX, scale = TRUE, option = "uniform", scannf = FALSE, nf = 2)
CVpred <- cvpred_mbplsda(modelembplsQ, nrepet = 30, threshold = 0.5, bloY = bloYobs,
optdim = ncpopt, cpus = 1, algo = c("max"))
# }
# NOT RUN {
data(status)
data(medical)
data(omics)
data(nutrition)
ktabX <- ktab.list.df(list(medical = medical,
nutrition = nutrition, omics = omics))
disjonctif <- (disjunctive(status))
dudiY <- dudi.pca(disjonctif , center = FALSE, scale = FALSE, scannf = FALSE)
bloYobs <- 2
ncpopt <- 1
modelembplsQ <- mbplsda(dudiY, ktabX, scale = TRUE, option = "uniform", scannf = FALSE, nf = 2)
CVpred <- cvpred_mbplsda(modelembplsQ, nrepet = 90, threshold = 0.5, bloY = bloYobs,
optdim = ncpopt, cpus = 1, algo = c("max"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab