View pathway or gene-weighted PCA 'Pagoda2' version of the function pagoda.show.pathways() Takes in a list of pathways (or a list of genes), runs weighted PCA, optionally showing the result.
tp2c.view.pathways(
pathways,
p2,
goenv = NULL,
batch = NULL,
n.genes = 20,
two.sided = TRUE,
n.pc = rep(1, length(pathways)),
colcols = NULL,
zlim = NULL,
labRow = NA,
vhc = NULL,
cexCol = 1,
cexRow = 1,
nstarts = 50,
row.order = NULL,
show.Colv = TRUE,
plot = TRUE,
trim = 1.1/nrow(p2$counts),
showPC = TRUE,
...
)
character vector of pathway or gene names
'Pagoda2' object
environment mapping pathways to genes (default=NULL)
factor (corresponding to rows of the model matrix) specifying batch assignment of each cell, to perform batch correction (default=NULL).
integer Number of genes to show (default=20)
boolean If TRUE, the set of shown genes should be split among highest and lowest loading (default=TRUE). If FALSE, genes with highest absolute loading should be shown.
integer vector Number of principal component to show for each listed pathway(default=rep(1, length(pathways)))
column color matrix (default=NULL)
numeric z color limit (default=NULL)
row labels (default=NA)
cell clustering (default=NULL)
positive numbers, used as cex.axis in for the row or column axis labeling(default=1)
positive numbers, used as cex.axis in for the row or column axis labeling(default=1)
integer Number of random starts to use (default=50)
row order (default=NULL). If NULL, uses order from hclust.
boolean Whether to show cell dendrogram (default=TRUE)
boolean Whether to plot (default=TRUE)
numeric Winsorization trim that should be applied (default=1.1/nrow(p2$counts)). Note that p2 is a 'Pagoda2' object.
boolean (default=TRUE)
parameters to pass to my.heatmap2. Only if plot is TRUE.
cell scores along the first principal component of shown genes (returned as invisible)