Perform basic 'pagoda2' processing, i.e. adjust variance, calculate pca reduction, make knn graph, identify clusters with multilevel, and generate largeVis and tSNE embeddings.
basicP2proc(
cd,
n.cores = 1,
n.odgenes = 3000,
nPcs = 100,
k = 30,
perplexity = 50,
log.scale = TRUE,
trim = 10,
keep.genes = NULL,
min.cells.per.gene = 0,
min.transcripts.per.cell = 100,
get.largevis = TRUE,
get.tsne = TRUE,
make.geneknn = TRUE
)
a new 'Pagoda2' object
count matrix whereby rows are genes, columns are cells.
numeric Number of cores to use (default=1)
numeric Number of top overdispersed genes to use (dfault=3e3)
numeric Number of PCs to use (default=100)
numeric Default number of neighbors to use in kNN graph (default=30)
numeric Perplexity to use in generating tSNE and largeVis embeddings (default=50)
boolean Whether to use log scale normalization (default=TRUE)
numeric Number of cells to trim in winsorization (default=10)
optional set of genes to keep from being filtered out (even at low counts) (default=NULL)
numeric Minimal number of cells required for gene to be kept (unless listed in keep.genes) (default=0)
numeric Minimumal number of molecules/reads for a cell to be admitted (default=100)
boolean Whether to caluclate largeVis embedding (default=TRUE)
boolean Whether to calculate tSNE embedding (default=TRUE)
boolean Whether pre-calculate gene kNN (for gene search) (default=TRUE)