data(bfiN) # loading example data set
data(bfi_cov) # loading covariates to bfiN data set
# calculating itemparameters and SE for two random allocated subsamples
grm_gen <- grm(daten=bfiN, split = bfi_cov$gender)
summary(grm_gen)
#### plot(grm_gen)
grm_med <- grm(daten=bfiN, split = "median")
summary(grm_med)
#### plot(grm_med)
grm_ran<-grm(daten=bfiN, split = "random")
summary(grm_ran)
# some examples for plotting options
# plotting item difficulties for two subsamples against each other
# with elipses for a CI = 95% .
#### plot(grm_ran)
# using triangles as plotting pattern
#### plot(grm_ran,pch=2)
#plotting without CI ellipses
#### plot(grm_ran,ci=0,pch=2)
# plotting with item names
#### plot(grm_ran,itemNames=TRUE)
# Changing the size of the item names
#### plot(grm_ran,itemNames=TRUE, cex.names = 1.3)
# Changing the color of the CI ellipses
plot(grm_ran,itemNames=TRUE, cex.names = .8, col.error="green")
###### example from details section 'Some Notes on Standard Errors' ########
if (FALSE) {
grm_def<-grm(daten=bfiN, split = "random",splitseed=13)
plot(grm_def)
######
grm_400<-grm(daten=bfiN, split = "random", splitseed=13 ,nsample=400)
plot(grm_400)
}
Run the code above in your browser using DataLab