##########
data("kft5")
S_ran_kft <- pairwise.S(daten = kft5,m = 2,split = "random")
summary(S_ran_kft)
summary(S_ran_kft,thres = FALSE)
#### polytomous examples
data(bfiN) # loading example data set
data(bfi_cov) # loading covariates to bfiN data set
# calculating itemparameters and SE for two subsamples by gender
S_gen <- pairwise.S(daten=bfiN, split = bfi_cov$gender)
summary(S_gen)
summary(S_gen,thres = FALSE)
# other splitting criteria
if (FALSE) {
S_med <- pairwise.S(daten=bfiN, split = "median")
summary(S_med)
S_ran<-pairwise.S(daten=bfiN, split = "random")
summary(S_ran)
S_ran.4<-pairwise.S(daten=bfiN, split = "random.4")
summary(S_ran.4) # currently not displayed
###### example from details section 'Some Notes on Standard Errors' ########
S_def<-pairwise.S(daten=bfiN, split = "random",splitseed=13)
summary(S_def)
######
S_400<-pairwise.S(daten=bfiN, split = "random", splitseed=13 ,nsample=400)
summary(S_400)
}
Run the code above in your browser using DataLab